로터 밸런싱의 분할 보정 이해
정의: 분할 수정이란 무엇입니까?
분할 수정 실용적이다 밸런싱 단일 계산된 기술 보정 무게 는 로터의 서로 다른 각도 위치에 배치된 두 개 이상의 작은 무게추로 나뉩니다. 이러한 분할된 무게추의 질량과 각도는 다음을 사용하여 계산됩니다. 벡터 추가 원래 단일 수정 가중치와 결합된 효과가 동일하도록 원칙을 적용합니다.
이 방법은 물리적 제약으로 인해 이상적인 계산 위치에 보정 가중치를 배치할 수 없지만, 두 개 이상의 접근 가능한 위치에 가중치를 배치하여 벡터적으로 결합하면 원하는 보정을 생성할 수 있는 경우에 사용됩니다.
분할 수정은 언제 사용되나요?
다음과 같은 일반적인 필드 밸런싱 상황에서는 분할 수정이 필요해집니다.
1. 이상적인 위치의 장애물
계산된 보정 각도는 볼트 구멍, 키웨이, 오일 포트, 센서 장착 지점 또는 질량을 추가하거나 제거하는 것이 불가능하거나 권장되지 않는 기타 기능과 일치할 수 있습니다.
2. 단일 대형 중량에 대한 제한된 공간
계산된 보정에는 공간 제약으로 인해 지정된 위치에 물리적으로 맞지 않는 하나의 큰 가중치가 필요할 수 있지만, 근처 각도에 두 개의 작은 가중치를 수용할 수 있습니다.
3. 팬 블레이드 또는 임펠러의 균형 조정
팬, 송풍기 또는 터빈 휠과 같은 장비에서는 보정 추를 개별 블레이드 팁이나 포켓에 부착해야 하는 경우가 많습니다. 분할 보정을 사용하면 필요한 보정량을 이상적인 각도의 양쪽에 위치한 두 개 이상의 블레이드에 분산시킬 수 있습니다.
4. 고정 각도 간격의 구멍 또는 장착 지점
많은 로터에는 일정한 간격(예: 15°, 30° 또는 45°)으로 구멍이나 장착 위치가 미리 뚫려 있습니다. 계산된 보정 각도가 두 구멍 사이에 있는 경우, 분할 보정을 통해 무게를 인접한 두 위치에 분산할 수 있습니다.
5. 무게 제거(재료 제거)
재료를 드릴링하거나 연삭하여 교정하는 경우, 접근 제한이나 구조적 문제로 인해 정확히 계산된 각도에서 재료를 제거하지 못할 수 있습니다. 분할 교정을 통해 두 개의 접근 가능한 위치에서 재료를 제거할 수 있습니다.
분할 보정의 수학
분할 보정은 벡터(이 경우 불균형 벡터)를 더하여 구성 요소로 분해할 수 있다는 원리에 기반합니다. 이 과정에서는 벡터 수학을 사용하여 분할된 가중치가 원래 단일 가중치와 동일한 순효과를 생성하도록 합니다.
기본 원칙
각도 θ에서 크기 W의 보정 가중치가 필요한 경우 각도 θ₁ 및 θ₂에서 두 개의 가중치 W₁ 및 W₂로 대체할 수 있습니다. 여기서:
- W₁ 및 W₂는 기하학적 제약과 실제적 제약을 기반으로 선택됩니다.
- θ₁에서의 W₁과 θ₂에서의 W₂의 벡터 합은 θ에서의 W와 같습니다.
대칭 각도에서의 동일 분할
가장 간단하고 일반적인 경우는 원하는 각도를 중심으로 대칭적으로 배치된 두 각도에 무게추를 균등하게 분할하는 것입니다. 예를 들어, 계산된 보정값이 45°에서 100g인데, 무게추는 30°와 60°에만 배치할 수 있는 경우:
- 무게 W₁를 30°에 놓으세요
- 무게추 W₂를 60°에 놓으세요
- W₁과 W₂를 계산하여 벡터 합이 45°에서 100g가 되도록 하세요.
대칭 분할(동일한 각도 분리)의 경우 계산은 간단하며 그래픽으로 수행하거나 삼각법을 사용하여 수행할 수 있습니다.
비대칭 분할
사용 가능한 각도가 이상적인 각도를 중심으로 대칭이 아닌 경우 계산이 더 복잡해지고 일반적으로 균형 장비의 소프트웨어가 전체 벡터 수학을 사용하여 적절한 분할 가중치를 계산해야 합니다.
분할 교정을 위한 실제 절차
대부분의 최신 밸런싱 장비에는 프로세스를 자동화하는 분할 보정 계산기가 포함되어 있습니다.
1단계: 원래 수정 사항 계산
일반을 완료하세요 영향력 계수 필요한 보정 무게와 각도를 결정하기 위한 균형 조정 절차입니다.
2단계: 사용 가능한 위치 식별
로터에 실제로 무게추를 놓을 수 있는 위치를 확인하세요. 접근 가능한 장착 지점, 볼트 구멍 또는 블레이드 위치의 각도를 기록하세요.
3단계: 분할 매개변수 입력
계산된 보정 무게와 각도를 밸런싱 기기의 분할 보정 기능에 입력하세요. 그런 다음 무게를 배치할 수 있는 두 개(또는 그 이상)의 각도를 지정하세요.
4단계: 분할 가중치 계산
이 기구는 원래 수정값과 동일한 값을 산출하기 위해 지정된 각 각도에서 필요한 질량을 계산합니다.
5단계: 설치 및 확인
계산된 위치에 분할 가중치를 설치하고 진동이 예상대로 감소했는지 확인하기 위해 검증 테스트를 실행합니다.
예: 팬의 2방향 분할
12개 날개 팬의 균형 시나리오를 고려하세요.
- 계산된 수정: 35°에서 50그램
- 강제: 무게추는 블레이드 끝에만 부착할 수 있으며, 블레이드 끝은 30°마다(0°, 30°, 60°, 90° 등) 배치됩니다.
- 사용 가능한 블레이드: 30°에서 블레이드, 60°에서 블레이드(35° 타겟을 사이에 두고)
분할 보정 사용:
- 30°에서의 무게 = 30그램
- 60°에서의 무게 = 25그램
이 두 가지 가중치를 벡터적으로 결합하면 35°에서 약 50g의 동등한 보정이 이루어져 정확한 이상적 각도에 접근하지 못하더라도 원하는 균형 효과를 얻을 수 있습니다.
3방향 및 다중방향 분할
두 방향 분할이 가장 일반적이지만, 이론적으로는 보정 가중치를 세 개 이상의 위치로 분할할 수 있습니다. 그러나:
- 복잡성 증가: 계산은 더욱 복잡해지고 가능한 해결책도 여러 가지가 있습니다.
- 감소 수익: 분할된 위치가 추가될 때마다 비례적인 이점 없이 복잡성이 증가합니다.
- 오류 누적: 분할된 위치가 많을수록 설치 오류가 누적될 가능성이 커집니다.
실제로 3방향 분할은 가끔 터빈 휠이나 다중 날개 팬과 같은 장비에 사용되지만, 3방향 분할을 넘어서는 경우는 드물며 일반적으로 다른 접근 방식을 고려해야 함을 나타냅니다.
장점과 한계
장점
- 실용적인 유연성: 이상적인 위치에 접근할 수 없는 경우에도 균형을 맞출 수 있습니다.
- 효과 유지: 정확하게 계산하면, 분할 보정은 수학적으로 단일 지점 보정과 동일합니다.
- 필드 밸런싱에서 일반적인 사항: 필수 기술 필드 밸런싱 현실 세계의 제약이 흔한 경우.
제한 사항
- 설치 복잡성 증가: 더 많은 무게를 다루고, 측정하고, 설치해야 하므로 오류가 발생할 가능성이 커집니다.
- 오류 가능성: 분할 가중치를 계산하거나 설치하는 과정에서 실수가 발생하면 보정이 불완전해지거나 진동이 증가할 수도 있습니다.
- 항상 가능한 것은 아닙니다: 사용 가능한 각도가 이상적인 각도에서 너무 멀리 떨어져 있는 경우 분할 교정이 실용적이지 않을 수 있으며 대체 교정 평면을 고려해야 할 수도 있습니다.
- 반경 위치 감도: 분할 보정은 가중치가 동일한 반경에 있다고 가정합니다. 사용 가능한 장착 지점의 반경이 서로 다른 경우 추가 계산이 필요합니다.
모범 사례
성공적인 분할 수정을 보장하려면:
- 계측 소프트웨어 사용: 오류가 발생하기 쉬운 수동 계산을 시도하기보다는 항상 밸런싱 장비에 내장된 분할 보정 계산기를 사용하세요.
- 각도 편차 최소화: 이상적인 계산 각도에 최대한 가까운 분할 각도를 선택하세요. 편차가 크면 총 질량이 더 커지고 오류에 대한 민감도가 높아집니다.
- 각도 위치 확인: 분할 추를 놓을 실제 각도를 주의 깊게 측정하고 표시하세요. 작은 각도 오차라도 결과에 큰 영향을 미칠 수 있습니다.
- 방사형 일관성 유지: 가능하다면 모든 분할 가중치를 로터 중심선으로부터 동일한 반경 거리에 배치하세요.
- 철저히 문서화하세요: 향후 참조 및 문제 해결을 위해 모든 분할 보정 계산과 설치 위치를 기록합니다.
다른 균형 개념과의 관계
분할 보정은 밸런싱 작업 전반에 사용되는 벡터 수학의 기본 원리에 의존합니다. 이해 벡터 추가, 위상 관계, 그리고 극좌표 플롯 특히 분할 수정으로 예상한 결과가 나오지 않는 문제 해결 상황에서 분할 수정 기술을 올바르게 적용하는 데 필수적입니다.