.

.

.

.

                                                                               

.

.

.

                         


.

.

PORTABLE BALANCER “Balanset-1A”

.

A Dual-Channel
PC-Based Dynamic Balancing System

.

.

.

OPERATION MANUAL
rev. 1.56 May 2023

.

.

                

.

.

.

.

.

.

.

.

.

2023

Estonia, Narva

.

TABLE OF CONTENTS

.

.

1.

BALANCING SYSTEM OVERVIEW

3

2.

SPECIFICATION

4

3.

COMPONENTS AND DELIVERY SET

5

4.

BALANCE PRINCIPLES

6

5.

SAFETY PRECAUTIONS

9

6.

SOFTWARE AND HARDWARE SETTINGS

8

7.

BALANCING SOFTWARE

13

.

7.1

General

Initial window………………………………………………………..
F1-About»…………………………………………………………..
F2-«Single plane», F3-«Two plane»……………………………….
F4 – «Settings»……………………………………………………..
F5 – «Vibration meter»…………………………………………….
F6 – «Reports».
F7 – «Balancing»
F8 – «Charts»

13

13

15

16

17

18

18

18

18

.

7.2

“Vibration meter” mode

19

.

7.4

Balancing in one plane (static)

27

.

7.5

Balancing in two planes (dynamic)

38

.

7.6

“Charts” mode

49

8.

General instructions on operation and maintenance of the device

55

.

Annex 1 Balancing in operational conditions

61

.

                                                           

.

.

.

.

.

.

1.  BALANCING SYSTEM OVERVIEW

.

Balanset-1A balancer provides single- and twoplane dynamic balanslaşdırma services for fans, grinding wheels, spindles, crushers, pumps and other rotating machinery.

.

Balanset-1A balancer includes two vibrosensors (accelerometers), laser phase sensor (tachometer), 2-channels USB interface unit with pre-amplifiers, integrators and ADC acquired module and Windows based balancing software.

Balanset-1A require notebook or other Windows (WinXP…Win11, 32 or 64bit) compatible PC.

Balancing software provides the correct balancing solution for single-plane and two-plane balancing automatically.  Balanset-1A is simple to use for non-vibration experts.

.

All balancing results saved in archive and can be used to create the reports.

.

Features:

 Easy to use
 Storage of unlimited balancing data
 User selectable trial mass
 Split weight calculation, drill calculation
 Trial mass validity automatically popup message
 Measuring RPM, amplitude and phase of vibrovelocity overall and 1x vibration
 FFT spectrum
 Dual-channel simultaneous data collection
 Waveform and spectrum display
 Storage of vibration values and vibration waveform and spectra
 Balancing using saved influence coefficients
 Trim balancing
 Balancing mandrel eccentricity calculations
 Remove or leave trial weights
 Balancing tolerance calculation (ISO 1940 G-classes)
 Changing correction planes calculations
 Polar graph
 Manual data input
 RunDown charts (experimental option)
2. SPECIFICATION

Measurement range of the root-mean-square value (RMS) of the vibration velocity, mm/sec (for 1x vibration)  

from 0.02 to 100

The frequency range of the RMS measurement of the vibration velocity, Hz

5 ilə 550 arasında

Number of the correction planes

.

1 or 2

Range of the frequency of rotation measurement, rpm

100 – 100000

.

.

Range of the vibration phase measurement, angular degrees

from 0 to 360

Error of the vibration phase measurement, angular degrees

± 1

Dimensions (in hard case), cm,

39*33*13

Mass, kg

<5

Overall dimensions of the vibrator sensor, mm, max   

25*25*20

Mass of the vibrator sensor, kg, max

0.04

– Temperature range: from 5°C to 50°C
– Relative humidity: < 85%, unsaturated
– Without strong electric-magnetic field & strong impact

.

.

3. PACKAGE

.

Balanset-1A balancer includes two single-axis accelerometers, laser phase reference marker (digital tachometer), 2-channel USB interface unit with pre-amplifiers, integrators and ADC acquired module and Windows based balancing software.
.

Delivery set

.

Description

Number

Note

USB interface unit

1

.

Laser phase reference marker (tachometer)

1

.

Single-axis accelerometers

2

.

Magnetic stand

1

.

Digital scales

1

.

Hard case for transportation

1

.

“Balanset-1A”. User’s manual.

1

.

Flash disk with balancing software

1

.

.

.

.

4. BALANCE PRINCIPLES

4.1. “Balanset-1A” include (fig. 4.1) USB interface unit (1), two accelerometers (2) and (3), phase reference marker (4) and portable PC (not supplied) (5).

Delivery set also includes the magnetic stand (6) used for mounting the phase reference marker and digital scales 7.

X1 and X2 connectors intended for connection of the vibration sensors respectively to 1 and 2 measuring channels, and the X3 connector used for connection of the phase reference marker.

The USB cable provides power supply and connection of the USB interface unit to the computer.

.

                                                                 

.

Fig. 4.1. Delivery set of the “Balanset-1A”

.

Mechanical vibrations cause an electrical signal proportional to the vibration acceleration on the output of the vibration sensor. Digitized signals from ADC module transferred via USB to the portable PC (5). Phase reference marker generate the pulse signal used to calculate rotation frequency and vibration phase angle.
Windows based software provides solution for single-plane and two-plane balancing, spectrum analyzing, charts, reports, storage of influence coefficients

                                                                                                                                 

5. SAFETY PRECAUTIONS

.

5.1. Attention! When operating on 220V electrical safety regulations must be observed. It is not allowed to repair the device when connected to 220 V.

5.2. If you use the appliance in a low quality AC power and weights of network interference it is recommended to use a standalone power from computer’s battery pack.

6. SOFTWARE AND HARDWARE SETTINGS.
6.1. USB drivers and balancing software installation

Before working install drivers and balancing software.
.

List of folders and files.

Installation disk (flash drive) contains the following files and folders:

Bs1Av###Setup – folder with “Balanset-1A” balancing software (### – version number)

ArdDrv– USB drivers

EBalancer_manual.pdf – this manual

Bal1Av###Setup.exe – setup file. This file contains all archived files and folders mentioned above. ###– version of “Balanset-1A” software.

Ebalanc.cfg – sensitivity value

Bal.ini – some initialization data
.

Software Installation procedure .

For installing drivers and specialized software run file Bal1Av###Setup.exe and follow setup instructions by pressing buttons «Next», «ОК» etc.

.

.

Choose setup folder. Usually the given folder should not be changed.

.

.

.

Then the program requires specifying Program group and desktop folders. Press button Next.

.

.

The window «Ready to Install» appears.

.

.

Press button «Install»

.

.

.

Install Arduino drivers.

Press button “Next”, then “Install” and “Finish”

.

.

And finally press button «Finish»

.

As a result all necessary drivers and the balanslaşdırma software are installed on the computer. After that it is possible to connect the USB interface unit to the computer.

.

Finishing installation.

.

 Install sensors on the inspected or balanced mechanism (Detailed information about how to install the sensors is given in Annex 1)
 Connect vibration sensors 2 and 3 to the inputs X1 and X2, and phase angle sensor to the input X3 of USB interface unit.
 Connect USB interface unit to the USB-port of the computer.
  When using the AC power supply connect the computer to the power mains. Connect the power supply to 220 V, 50 Hz.6.3.5. Click shortcut “Balanset-1A” on desktop.

                                                                                                

7 BALANCING SOFTWARE

7.1. General

Initial window.

When running the program “Balanset-1A” the Initial window, shown in Fig. 7.1, appears.

Fig. 7.1. Initial window of the “Balanset-1A”

.

There are 9 buttons in the Initial window with the names of the functions realized when click on them.

.

.

.

.

.

.

.

F1-«About»

.

Fig. 7.2. F1-«About» window

F2-«Single plane», F3-«Two plane».

Pressing “F2Single-plane” (or F2 function key on the computer keyboard) selects the measurement vibration on thechannel X1.

After clicking this button, the computer display diagram shown in Fig. 7.1 illustrating a process of measuring the vibration only on the first measuring channel (or the balancing process in a single plane).

Pressing the “F3Two-plane” (or F3 function key on the computer keyboard) selects the mode of vibration measurements on two channels X1 and X2 simultaneously. (Fig. 7.3.)

Initial window of the “Balanset-1A”. Two plane balancing.

.

Fig. 7.3. Initial window of the “Balanset-1A”. Two plane balancing.

.

.

.

.

.

.

.

.

.

F4 – «Settings».

In this window you can change some Balanset-1A settings.

In this window you can change some Balanset-1A settings.

Fig. 7.4. “Settings” window

 Sensitivity. The nominal value is 13 mV / mm/s.

Changing the sensitivity coefficients of sensors is required only when replacing sensors!
.

Attention!

When you enter a sensitivity coefficient its fractional part is separated from the integer part with the decimal point (the sign “,”).

Averaging – number of averaging (number of revolutions of the rotor over which data is averaged to more accuracy)

Tacho channel# – channel# the Tacho is connected. By default – 3rd channel.

Unevenness – the difference in duration between adjacent tacho pulses, which above gives the warning “Failure of the tachometer

Imperial/Metric – Select the system of units.

Com port number is assigned automatically.
.

F5 – «Vibration meter».

Pressing this button (or a function key of F5 on the computer keyboard) activates the mode of vibration measurement on one or two measuring channels of virtual Vibration meter depending on the buttons condition “F2-single-plane”, “F3-two-plane”.

.

F6 – «Reports».

  Pressing this button (or F6 function key on the computer keyboard) switches on the balancing Archive, from which you can print the report with the results of balancing for a specific mechanism (rotor).

.

F7 – «Balancing».

  Pressing this button (or function key F7 on your keyboard) activates balancing mode in one or two correction planes depending on which measurement mode is selected by pressing the buttons “F2-single-plane”, “F3-two-plane”.

F8 – «Charts».

  Pressing this button (or F8 function key on the computer’s keyboard) enables graphic Vibration meter, the implementation of which displays on a display simultaneously with the digital values of the amplitude and phase of the vibration graphics of its time function.

F10 – «Exit».

  Pressing this button (or F10 function key on the computer’s keyboard) completes the program “Balanset-1A”.
.

.

  7.2. “Vibration meter”.

  Before working in the “ Vibration meter ” mode, install vibration sensors on the machine and connect them respectively to the connectors X1 and X2 of the USB interface unit. Tacho sensor should be connected to the input X3 of the USB interface unit.

.

.

Fig. 7.5 USB interface unit

.

Place reflective type on the surface of a rotor for tacho wotking.

.

Fig. 7.6. Reflective type.

Recommendations for the installation and configuration of sensors are given in Annex 1.
.

  To begin the measurement in the Vibration meter mode click on the button “F5 – Vibration Meter” in the Initial window of the program (see fig. 7.1).

Vibration Meter window appears (see. Fig.7.7)

.

Fig. 7.7. Vibration meter mode. Wave and Spectrum.

                                                                                                                   

  To start vibration measurements click button “F9 – Run” (or press the function key F9 on the keyboard).

  If Trigger mode  Auto is checked – the results of vibration measurements will be periodically displayed on the screen.

  In case of simultaneous measurement of vibration on the first and second channels, the windows located beneath the words “Plane 1” and “Plane 2” will be filled.
.

Vibration measuring in the “Vibration” mode also may be carried out with disconnected phase angle sensor. In the Initial window of the program the value of the total RMS vibration (V1s, V2s) will only be displayed.

There are next settings in Vibration meter mode

 RMS Low, Hz – lowest frequency to calculate RMS of overall vibration
 Bandwidth – vibration frequency bandwidth in the chart
 Averages – number of average for more measure accuracy

.

To complete the work in the “Vibration meter” mode click button “F10 – Exit” and return to the Initial window.

.

Fig. 7.8. Vibration meter mode. Rotation speed Unevenness, 1x vibration wave form.

                    

  Fig. 7.9. Vibration meter mode. Rundown (beta version, no warranty!).                  

.

    

7.3 Balancing procedure

Balancing is performed for mechanisms in good technical condition and correctly mounted. Otherwise, before the balancing the mechanism must be repaired, installed in proper bearings and fixed. Rotor should be cleaned of contaminants that can hinder from balancing procedure.

.

Before balancing measure vibration in Vibration meter mode (F5 button) to be sure that mainly vibration is 1x vibration.

.


Fig. 7.10. Vibration meter mode. Checking overall (V1s,V2s) and 1x (V1o,V2o) vibration.

.

If the value of the overall vibration V1s (V2s) is approximately equal to the magnitude of the

vibration at rotational frequency (1x vibration) V1o (V2o), it can be assumed that the main contribution to the vibration mechanism pays an imbalance of the rotor. If the value of the overall vibration V1s (V2s) is much higher than the 1x vibration component V1o (V2o), it is recommended to check the condition of a mechanism – condition of bearings, its mount on the base, the lack of grazing for the fixed parts of the rotor during rotation, etc.

You should also pay attention to the stability of the measured values in Vibration meter mode – the amplitude and phase of the vibration should not vary by more than 10-15% in the measurement process. Otherwise, it can be assumed that the mechanism is running close-to-resonance domain. In this case, change the speed of rotation of the rotor, and if this is not possible – change the conditions of installation of the machine on the foundation (for example, temporarily setting on spring supports).

For rotor balancing influence coefficient method of balancing (3-run method) should be taken.

Trial runs are done to determine the effect of trial mass on vibration change, mass and place (angle) of installation of correction weights.

First determine the original vibration of a mechanism (first start without weight), and then set the trial weight to the first plane and made the second start. Then, remove the trial weight from the first plane, set in a second plane and made the second start.

The program then calculates and indicates on the screen the weight and location (angle) of installation of correction weights.

When balancing in a single plane (static), the second start is not required.

Trial weight is set to an arbitrary location on the rotor where it is convenient, and then the actual radius is entered in the setup program.

(Position Radius is used only for calculating the unbalance amount in grams * mm) 

Vacibdir!

 Measurements should be carried out with the constant speed of rotation of the mechanism!
 Correction weights must be installed on the same radius as the trial weights!
Mass of the trial weight is selected so that after its installation phase (> 20-30°) and (20-30%) the amplitude of vibration change significantly. If changes are too small, the error increases greatly in subsequent calculations. Conveniently set trial mass at the same place (the same angle) as the phase mark.

Vacibdir!

After each test run trial mass are removed! Correction weights set at an angle calculated from the place of trial weight installation in the direction of rotation of the rotor!

Fig. 7.11. Correction weight mounting.

.

.

.

Recommended!

Before performing dynamic balancing, it is recommended to make sure that static imbalance is not too high. For rotors with horizontal axis, the rotor can be manually rotated by an angle of 90 degrees from the current position. If the rotor is statically unbalanced, it will be rotated to a position of equilibrium. Once the rotor will assume the position of equilibrium, it is necessary to set the weight balancing in the top point approximately in the middle part of the rotor length. Weight of the weight should be chosen in such a way that the rotor is not moving in any position.

Such pre-balancing will reduce the amount of vibration at the first start of strongly unbalanced rotor.

Sensor installation and mounting.
Vibration sensor must be installed on the machine in the selected measuring point and connected to the input X1 of the USB interface unit.
There are two mounting configurations
• Magnets

Threaded studs M4

Optical tacho sensor should be connected to the input X3 of the USB interface unit. Furthermore, for use of this sensor a special reflecting mark should be applied on surface of a rotor.

Detailed requirements on site selection of the sensors and their attachment to the object when balancing are set out in Annex 1.    
.

   

7.3.1 Single plane balancing.

.

Fig. 7.12. “Single plane balancing

.

Balancing Archive.

.

To start working on the program in the “Single-Plane balancing” mode, click on the “F2-Single-plane” button (or press the F2 key on the computer keyboard).

.

Then click on the “F7 – Balancing” button, after which the Single Plane balancing archive window will appear, in which the balancing data will be saved (see Fig. 7.13).      

                                                                                              

  

Fig. 7.13 The window for selecting the balancing archive in single plane.

.

      In this window, you need to enter data on the name of the rotor (Rotor name), place of rotor installation (Place), tolerances for vibration and residual imbalance (Tolerance), date of measurement. This data is stored in a database. Also, a folder Arc### is created in, where ### is the number of the archive in which the charts, a report file, etc. will be saved. After the balancing is completed, a report file will be generated that can be edited and printed in the built-in editor.

.

After entering the necessary data, you need to click the “F10-OK” button, after which the “Single-Plane balancing” window will open (see Fig. 7.13)

.

Balancing settings (1-plane)

                                                                                                                  

                             

Fig. 7.14. Single plane. Balancing settings
.

In the left side of this window displays the data of vibration measurements and the measurement control buttons “Run # 0”, “Run # 1”, “RunTrim”.
In the right side of this window there are three tabs

 Balancing settings
 Charts
 Result

.

.

.

.

.

.

.

The “Balancing settings” tab is used to enter the balancing settings:

1. “Influence coefficient” –

    • New Rotor” – selection of the balancing of the new rotor, for which there are no stored balancing coefficients and two runs are required to determine the mass and installation angle of the correction weight.

    • Saved coeff.” – selection of the rotor re-balancing, for which there are saved balancing coefficients and only one run is required for determining the weight and installation angle of the corrective weight.

.

    2. “Trial weight mass” –

     Percent” – corrective weight is calculated as a percentage of the trial weight.

     Gram” – the known mass of the trial weight is entered and the mass of the corrective weight is calculated in grams or in oz for Imperial system.

        Attention!

        If it is necessary to use the “Saved coeff.” Mode for further work during initial balancing, the trial weight mass must be entered in grams or oz, not in %. Scales are included in the delivery package.

.

    3. “Weight Attachment Method

     Free position” – weights can be installed in an arbitrary angular positions on the circumference of the rotor.

     Fixed position” – weight can be installed in fixed angular positions on the rotor, for example, on blades or holes (for example 12 holes – 30 degrees), etc. The number of fixed positions must be entered in the appropriate field. After balancing, the program will automatically split the weight into two parts and indicate the number of positions on which it is necessary to establish the masses obtained.

Fig. 7.15. Result tab. Fixed position of correction weight mounting.

Z1 and Z2 – positions of corrective weights installed, calculated from Z1 position according rotation direction. Z1 is position of trial weight was installed.


.

.

.

Fig. 7.16 Fixed positions. Polar diagram.
.

Circular groove – used for grinding wheel balancing In this case 3 counterweights are used to eliminate unbalance


Fig. 7.17 Grinding wheel balancing with 3 counterweights

Fig. 7.18 Grinding wheel balancing. Polar graph.

.

.

 Mass mount radius, mm” –  “Plane1” – The radius of the trial weight in the 1 plane. It is required to calculate the magnitude of the initial and residual imbalance to determine compliance with the tolerance for residual imbalance after balancing.
 Leave trial weight in Plane1.” Usually the trial weight is removed during the balancing process. But in some cases it is impossible to remove it, then you need to set a check mark in this to account for the trial weight mass in the calculations.
 Manual data input” – used to manually enter the vibration value and phase into the appropriate fields on the left side of the window and calculate the mass and installation angle of the correction weight when switching to the “Results” tab
 Button “Restore session data“. During balancing, the measured data is saved in the session1.ini file. If the measurement process was interrupted due to computer freezing or for other reasons, then by clicking this button you can restore the measurement data and continue balancing from the moment of interruption.
 Mandrel eccentricity elimination (Index balancing)
Balancing with additional start to eliminate the influence of the eccentricity of the mandrel (balancing arbor). Mount the rotor alternately at 0° and 180° relative to the. Measure the unbalances in both positions.

.

    • Balancing tolerance

Entering or calculating residual imbalance tolerances in g x mm (G-classes)

    • Use Polar Graph

Use polar graph to display balancing results

.

1-plane Balancing. New rotor

As noted above, “New Rotor” balancing requires two test run and at least one trim run of the balancing machine.

.

Run#0 (Initial run)

After installing the sensors on the balancing rotor and entering the settings parameters, it is necessary to turn on the rotor rotation and, when it reaches working speed, press the “Run#0” button to start measurements.
The “Charts” tab will open in the right panel, where the wave form and spectrum of the vibration will be shown (Fig. 7.18.). In the bottom part of the tab, a history file is kept, in which the results of all starts with a time reference are saved. On disk, this file is saved in the archive folder by the name memo.txt

       Attention!

       Before starting the measurement, it is necessary to turn on the rotation of the rotor of the balancing machine (Run#0) and make sure that the rotor speed is stable.    

     

                                                                                                                                                        

Fig. 7.19. Balancing in one plane. Initial run (Run#0). Charts Tab

.

After measurement process finished, in the Run#0 section in the left panel the results of measuring appears – the rotor speed (RPM), RMS (Vo1) and phase (F1) of 1x vibration.

The “F5-Back to Run#0” button (or the F5 function key) is used to return to the Run#0 section and, if necessary, to repeat measure the vibration parameters.

.

   Run#1 (Trial mass Plane 1)

Before starting the measurement of vibration parameters in the section “Run#1 (Trial mass Plane 1), a trial weight should be installed according “Trial weight mass” field.     (see Fig. 7.10).

   The goal of installing a trial weight is to evaluate how the vibration of the rotor changes when a known weight is installed at a known place (angle). Trial weight must changes the vibration amplitude by either 30% lower or higher of initial amplitude or change phase by 30 degrees or more of initial phase.

      2. If it is necessary to use the “Saved coeff.” balancing for further work, the place (angle) of installation of the trial weight must be the same as the place (angle) of the reflective mark.     

Turn on the rotation of the rotor of the balancing machine again and make sure that it rotation frequency is stable. Then click on the “F7-Run#1” button (or press the F7 key on the computer keyboard). “Run#1 (Trial mass Plane 1)” section (see Fig. 7.18)
After the measurement in the corresponding windows of the “Run#1 (Trial mass Plane 1)” section, the results of measuring the rotor speed (RPM), as well as the value of the RMS component (Vо1) and phase (F1) of 1x vibration appearing.

At the same time, the “Result” tab opens on the right side of the window (see Fig. 7.13).

This tab displays the results of calculating the mass and angle of corrective weight, which must be installed on the rotor to compensate imbalance.

Moreover, in the case of using the polar coordinate system, the display shows the value of the mass (M1) and the installation angle (f1) of the correction weight.

In the case of “Fixed positions” the numbers of the positions (Zi, Zj) and trial weight splitted mass will be shown.

.

  Fig. 7.20. Balancing in one plane. Run#1 and balancing result.

.

.

If Polar graph is checked polar diagram will be shown.

.

Fig. 7.21. The result of balancing. Polar graph.

.

                                                  

Fig. 7.22. The result of balancing. Weight splitted (fixed positions)

Also if “Polar graph” was checked, Polar graph will be shown.   

       

                    

Fig. 7.23. Weight splitted on fixed positions. Polar graph

.

.

       Attention!:

    1. After completing the measurement process at the second run (“Run#1 (Trial mass Plane 1)”) of the balancing machine, it is necessary to stop the rotation and remove installed trial weight. Then install (or remove) the corrective weight on the rotor according result tab data.

If the trial weight was not removed, you need to switch to the “Balancing settings” tab and turn on the checkbox in “Leave trial weight in Plane1”. Then switch back to the “Result” tab. The weight and installation angle of the correction weight are recalculated automatically.

.

    2. The angular position of the corrective weight is performed from the place of installation of the trial weight. The direction of reference of the angle coincides with the direction of rotation of the rotor.

.

    3. In the case of “Fixed position” – the 1st position (Z1), coincides with the place of installation of the trial weight. The counting direction of the position number is in the direction of rotation of the rotor.

  4. By default the corrective weight will be added to the rotor. This is indicated by the label set in the “Add” field. If removing the weight (for example, by drilling), you must set a mark in the “Delete” field, after which the angular position of the correction weight will automatically change by 180º.

.

   After installing the correction weight on the balancing rotor in the operating window (see Fig. 7.15), it is necessary to carry out a RunC (trim) and evaluate the effectiveness of the performed balancing.

.

RunC (Check balance quality)

Attention!

Before starting the measurement on the RunC, it is necessary to turn on the rotation of the rotor of the machine and make sure that it has entered the operating mode (stable rotation frequency).

To perform vibration measurement in the “RunC (Check balance quality)” section (see Fig. 7.15), click on the “F7 – RunTrim” button (or press the F7 key on the keyboard).

            Upon successful completion of the measurement process, in the “RunC (Check balance quality)” section in the left panel, the results of measuring the rotor speed (RPM) appear, as well as the value of the RMS component (Vo1) and phase (F1) of 1x vibration.

In the “Result” tab, the results of calculating the mass and installation angle of the additional corrective weight are displayed.

.

Fig. 7.24. Balancing in one plane. Performing a RunTrim. Result Tab

                                                                     

This weight can be added to the correction weight that is already mounted on the rotor to compensate for the residual imbalance. In addition, the residual rotor unbalance achieved after balancing is displayed in the lower part of this window.

In the case when the amount of residual vibration and / or residual unbalance of the balanced rotor meets the tolerance requirements established in the technical documentation, the balancing process can be completed.

Otherwise, the balancing process may continue. This allows the method of successive approximations to correct possible errors that may occur during the installation (removal) of the corrective weight on a balanced rotor.

When continuing the balancing process on the balancing rotor, it is necessary to install (remove) additional corrective mass, the parameters of which are indicated in the section “Correction masses and angles”.

.

Influence coefficients (1-plane)

.

The “F4-Inf.Coeff” button in the “Result” tab (Fig. 7.23,) is used to view and store in the computer memory the coefficients of rotor balancing (Influence coefficients) calculated from the results of calibration runs.

When it is pressed, the “Influence coefficients (single plane)” window appears on the computer display (see Fig. 7.17), in which balancing coefficients calculated from the results of calibration (test) runs are displayed. If during the subsequent balancing of this machine it is supposed to use the “Saved coeff.” Mode, these coefficients must be stored in the computer memory.

To do this, click the “F9 – Save” button and go to the second page of the “Influence coeff. archive. Single plane.”(See Fig. 7.24)

.

.

                              Fig. 7.25. Balancing coefficients in the 1st plane

.

           Then you need to enter the name of this machine in the “Rotor” column and click “F2-Save” button to save the specified data on the computer.

Then you can return to the previous window by pressing the “F10-Exit” button (or the F10 function key on the computer keyboard).      

                                                 

Fig. 7.26. “Influence coeff. archive. Single plane. “

Balancing report.After balancing all data saved and Balancing report created. You can view and edit report in built-in editor. In the window “Balancing archive in one plane” (Fig. 7.9) press button “F9 -Report” to access to the balancing report editor.

.

                                                          

Fig. 7.26. Balancing report.

.

                                                        

          

Saved coeff. balancing procedure with saved influence coefficients in 1 plane.
Setting up the measuring system (input of initial data).

Saved coeff. balancing can be performed on a machine for which balancing coefficients have already been determined and entered into the computer memory.

Attention!

When balancing with saved coefficients, the vibration sensor and the phase angle sensor must be installed in the same way as during the initial balancing.

Input of the initial data for Saved coeff. balancing (as in the case of primary(“New rotor”) balancing) begins in the “Single plane balancing. Balancing settings.”(See Fig. 7.27).

In this case, in the “Influence coefficients” section, select the “Saved coeff” item. In this case, the second page of the “Influence coeff. archive. Single plane.”(See Fig. 7.27), which stores an archive of the saved balancing coefficients.

.

.

Fig. 7.28. Balancing with saved influence coefficients in 1 plane

.

       Moving through the table of this archive using the “►” or “◄” control buttons, you can select the desired record with balancing coefficients of the machine of interest to us. Then, to use this data in current measurements, press the “F2 – Select” button.

After that, the contents of all other windows of the “Single plane balancing. Balancing settings.” are filled in automatically.

After completing the input of the initial data, you can begin to measure.

                         

.

Measurements during balancing with saved influence coefficients.

Balancing with saved influence coefficients requires only one initial run and at least one test run of the balancing machine.

Attention!

Before starting the measurement, it is necessary to turn on the rotation of the rotor and make sure that rotating frequency is stable.

To carry out the measurement of vibration parameters in the “Run#0 (Initial, no trial mass)” section, press “F7 – Run#0” (or press the F7 key on the computer keyboard).

.

   
Fig. 7.29. Balancing with saved influence coefficients in one plane. Results after one run.

.

In the corresponding fields of “Run#0” section, the results of measuring the rotor speed (RPM), the value of the RMS component (Vо1) and phase (F1) of 1x vibration appear.

At the same time, the “Result” tab displays the results of calculating the mass and angle of the corrective weight, which must be installed on the rotor to compensate imbalance.

Moreover, in the case of using a polar coordinate system, the display shows the values ​​of the mass and the installation angle of the correction weight.

In the case of splitting of the corrective weight on the fixed positions, the numbers of the positions of the balancing rotor and the mass of weight that need to be installed on them are displayed.

Further, the balancing process is carried out in accordance with the recommendations set out in section 7.4.2. for primary balancing.

                                                          

Mandrel eccentricity elimination (Index balancing)If during balancing the rotor is installed in a cylindrical mandrel, then the eccentricity of the mandrel may introduce an additional error. To eliminate this error, the rotor should be deployed in the mandrel 180 degrees and carry out an additional start. This is called index balancing.

To carry out index balancing, a special option is provided in the Balanset-1A program. When checked Mandrel eccentricity elimination an additional RunEcc section appears in the balancing window.

.


Fig. 7.30. The working window for Index balancing.

.

After running Run # 1 (Trial mass Plane 1), a window will appear

Fig. 7.31 Index balancing attention window.
.

After installing the rotor with an 180 turn, Run Ecc must be completed. The program will automatically calculate the true rotor imbalance without affecting the mandrel eccentricity.

7.3.2 İki təyyarə balansı.

İşə başlamazdan əvvəl İki təyyarə balansı rejimində, seçilmiş ölçmə nöqtələrində maşının gövdəsinə vibrasiya sensorları quraşdırmaq və onları müvafiq olaraq ölçü vahidinin X1 və X2 girişlərinə qoşmaq lazımdır.

Ölçmə qurğusunun X3 girişinə optik faza bucağı sensoru qoşulmalıdır. Bundan əlavə, bu sensordan istifadə etmək üçün balans maşınının əlçatan rotor səthinə əks etdirici lent yapışdırılmalıdır.

.

       Balanslaşdırma zamanı sensorların quraşdırılması yerinin seçilməsi və onların obyektdə quraşdırılması üçün ətraflı tələblər Əlavə 1-də verilmişdir.

Proqram üzrə iş “İki təyyarə balansı” rejimi proqramların Əsas pəncərəsindən başlayır.

" üzərinə klikləyinF3 - İki təyyarə” düyməsini (və ya kompüter klaviaturasında F3 düyməsini basın).

Bundan əlavə, “F7 – Balanslaşdırma” düyməsini sıxın, bundan sonra kompüter ekranında iş pəncərəsi görünəcək (Şəkil 7.13-ə baxın), iki hissədə balanslaşdırarkən məlumatların saxlanması üçün arxivin seçilməsi.zolaqlar.

.

.

Şəkil 7.32 İki müstəvi balanslaşdırma arxiv pəncərəsi.

      

Bu pəncərədə balanslaşdırılmış rotorun məlumatlarını daxil etməlisiniz. " düyməsini basdıqdan sonraF10-OK” düyməsini basdıqda balanslaşdırma pəncərəsi görünəcək.

.

.

.

.

.

.

.

.

.

.

Balans parametrləri (2 müstəvi)

.

.

Şəkil 7.33. İki təyyarə pəncərəsində balanslaşdırma.

.

.

      Pəncərənin sağ tərəfində "Balancing settingsbalanslaşdırmadan əvvəl parametrləri daxil etmək üçün ” nişanı.

    • Influence coefficients

Yeni rotorun balanslaşdırılması və ya saxlanılan təsir əmsallarından istifadə edərək balanslaşdırma (tarazlaşdırma əmsalları)

    • Mandrel ekssentrikliyinin aradan qaldırılması

Mandranın eksantrikliyinin təsirini aradan qaldırmaq üçün əlavə başlanğıc ilə balanslaşdırma

    • Weight Attachment Method

Rotorun çevrəsi üzrə ixtiyari yerdə və ya sabit vəziyyətdə düzəldici çəkilərin quraşdırılması. Kütləni çıxararkən qazma üçün hesablamalar.
Free position” – weights can be installed in an arbitrary angular positions on the circumference of the rotor.

     Fixed position” – weight can be installed in fixed angular positions on the rotor, for example, on blades or holes (for example 12 holes – 30 degrees), etc. The number of fixed positions must be entered in the appropriate field. After balancing, the program will automatically split the weight into two parts and indicate the number of positions on which it is necessary to establish the masses obtained.

.

.

    • Trial weight mass

Sınaq çəkisi

    • Plane1 / Plane2-də sınaq çəkisini buraxın

Balanslaşdırarkən sınaq çəkisini çıxarın və ya buraxın.

    • Mass mount radius, mm

Montaj sınaqlarının radiusu və düzəldici çəkilər

    • Balancing tolerance

G-mm ilə qalıq balanssızlıq tolerantlıqlarının daxil edilməsi və ya hesablanması

    • Use Polar Graph

Use polar graph to display balancing results

    • Manual data input

Balanslaşdırma çəkilərinin hesablanması üçün məlumatların əl ilə daxil edilməsi

    • Son sessiya məlumatlarını bərpa edin

Balanslaşdırmanın davam etdirilməməsi halında son sessiyanın ölçmə məlumatlarının bərpası.

.

.

2 təyyarə balans. Yeni rotor
Setting up the measuring system (input of initial data).

üçün ilkin məlumatların daxil edilməsi Yeni rotor balansı içində "İki təyyarə balansı. Parametrlər”(bax. Şəkil 7.32.).

In this case, in the “Influence coefficients” section, select the “New rotor” maddə.

Bundan əlavə, “bölməsindəTrial weight mass", sınaq çəkisinin kütləsinin ölçü vahidini seçməlisiniz - "Gram” və ya “Percent“.

Ölçü vahidini seçərkən "Percent”, korreksiyaedici çəkinin kütləsinin bütün sonrakı hesablamaları sınaq çəkisinin kütləsinə nisbətdə faizlə aparılacaqdır.

seçərkən "Gram” ölçü vahidi, düzəldici çəki kütləsinin bütün sonrakı hesablamaları qramla aparılacaqdır. Sonra yazının sağında yerləşən pəncərələrə daxil olun "Gram” rotorda quraşdırılacaq sınaq çəkilərinin kütləsi.

.

Attention!

If it is necessary to use the “Saved coeff.” İlkin balanslaşdırma zamanı sonrakı iş rejimi, sınaq çəkilərinin kütləsi daxil edilməlidir grams.
Sonra seçin "Weight Attachment Method” – “Sirk” və ya “Fixed position”.
seçsəniz "Fixed position”, siz mövqelərin sayını daxil etməlisiniz.

.

.

Qalıq disbalansa dözümlülüyün hesablanması (Balansın tolerantlığı)

Qalıq balanssızlığa dözümlülük (Balansın tolerantlığı) ISO 1940 Vibrasiya-da təsvir edilən prosedura uyğun olaraq hesablana bilər. Rotorlar üçün keyfiyyət tələblərini sabit bir şəkildə tarazlayın (sərt) vəziyyət. Hissə 1. Balans tolerantlıqlarının dəqiqləşdirilməsi və yoxlanılması.   

                                                                   

                             

Fig. 7.34. Balancing tolerance calculation window

.

İlkin işə salınma (Run#0).

İki müstəvidə balanslaşdırarkən “New rotor” rejimində balanslaşdırma üç kalibrləmə qaçışını və balanslaşdırma maşınının ən azı bir sınaq işini tələb edir.

Maşının ilk işə salınmasında vibrasiya ölçülməsi “İki müstəvi balans” iş pəncərəsi (bax. Şəkil 7.34) “Run#0” bölməsi.

.

.

         Şəkil 7.35. Başlanğıcdan sonra iki müstəvidə balanslaşdırmada ölçmə nəticələri qaçmaq.

.

Attention!

       Ölçməyə başlamazdan əvvəl balans maşınının rotorunun fırlanmasını açmaq lazımdır (əvvəlcə qaçmaq) və sabit sürətlə iş rejiminə daxil olduğundan əmin olun.

Vibrasiya parametrlərini ölçmək üçün Run#0 bölməsində " üzərinə klikləyinF7 – Run#0” düyməsi (və ya kompüter klaviaturasında F7 düyməsini basın)

           Rotorun sürətinin (RPM), RMS dəyərinin (VО1, VО2) və 1x vibrasiyanın fazalarının (F1, F2) ölçülməsi nəticələri ekranın müvafiq pəncərələrində görünür. Run#0 bölmə.
.

Run#1. Plane1-də sınaq kütləsi.

.

Vibrasiya parametrlərini ölçməyə başlamazdan əvvəl “Run#1. Plane1-də sınaq kütləsi” bölməsində, balans maşınının rotorunun fırlanmasını dayandırmalı və üzərinə sınaq çəkisi quraşdırmalısınız, kütlə “Trial weight mass” bölməsi.

     Attention!

      1. Sınaq çəkilərinin kütləsinin və onların balanslaşdırıcı maşının rotorunda quraşdırılması yerlərinin seçilməsi məsələsi Əlavə 1-də ətraflı müzakirə olunur.

      2. Əgər istifadə etmək lazımdırsa Saved coeff. Gələcək işdə rejim, sınaq çəkisinin quraşdırılması yeri mütləq faza açısını oxumaq üçün istifadə olunan işarənin quraşdırılması yeri ilə üst-üstə düşməlidir.

.

Bundan sonra balans maşınının rotorunun fırlanmasını yenidən açmaq və onun iş rejiminə keçdiyinə əmin olmaq lazımdır.

Vibrasiya parametrlərini ölçmək üçün "# işə salın 1. Plane1-də sınaq kütləsi” bölməsində (bax. Şəkil 7.25), “ üzərinə klikləyin.F7 - Run#1” düyməsini (və ya kompüter klaviaturasında F7 düyməsini basın).

           

          Ölçmə prosesi uğurla başa çatdıqdan sonra siz ölçmə nəticələrinin nişanına qaytarılırsınız (bax. Şəkil 7.25).

           Bu halda, müvafiq pəncərələrdə "Çalışın#1. Plane1-də sınaq kütləsi” bölməsində rotorun sürətinin (RPM) ölçülməsinin nəticələri, həmçinin 1x vibrasiyanın RMS (Vо1, Vо2) və fazalarının (F1, F2) komponentlərinin qiyməti.

.

# 2. Təyyarə2-də sınaq kütləsini işə salın

.

Bölmədə vibrasiya parametrlərini ölçməyə başlamazdan əvvəl "# 2. Təyyarə2-də sınaq kütləsini işə salın", aşağıdakı addımları yerinə yetirməlisiniz:

         – balans aparatının rotorunun fırlanmasını dayandırmaq;

         – 1-ci təyyarədə quraşdırılmış sınaq çəkisini çıxarın;

         – 2-ci təyyarədə sınaq çəkisinə quraşdırın, bölmədə seçilmiş kütlə “Trial weight mass“.

           

Bundan sonra, balans maşınının rotorunun fırlanmasını yandırın və işləmə sürətinə daxil olduğundan əmin olun.

Kimə başlamaq vibrasiyanın ölçülməsi "# 2. Təyyarə2-də sınaq kütləsini işə salın” bölməsində (bax. Şəkil 7.26), “ üzərinə klikləyin.F7 - # 2-ni işə salın” düyməsini (və ya kompüter klaviaturasında F7 düyməsini basın). Sonra “Result” nişanı açılır.
.

istifadə edildiyi halda Weight Attachment Method” – Pulsuz vəzifələr, displey düzəldici çəkilərin kütlələrinin (M1, M2) və quraşdırma bucaqlarının (f1, f2) dəyərlərini göstərir.

.

           Şəkil 7.36. Düzəliş çəkilərinin hesablanmasının nəticələri – sərbəst mövqe

.

.

Şəkil 7.37. Düzəliş çəkilərinin hesablanmasının nəticələri – sərbəst mövqe.
Qütb diaqramı

.

Çəki əlavə etmə metodundan istifadə edildiyi halda” – Fixed positions


.

Şəkil 7.37. Düzəliş çəkilərinin hesablanmasının nəticələri – sabit mövqe.

Şəkil 7.39. Düzəliş çəkilərinin hesablanmasının nəticələri – sabit mövqe.
Qütb diaqramı.
.

Çəki əlavə etmə metodundan istifadə edildikdə” – Dairəvi yiv”

Şəkil 7.40. Düzəliş çəkilərinin hesablanmasının nəticələri – Circular groove.

.

Attention!:

    1. Üzərində ölçmə prosesini tamamladıqdan sonra RUN#2 tarazlayıcı maşından, rotorun fırlanmasını dayandırın və əvvəllər quraşdırılmış sınaq çəkisini çıxarın. Sonra düzəldici çəkiləri quraşdıra (və ya çıxara) bilərsiniz.

    2. Qütb koordinat sistemində düzəldici çəkilərin bucaq vəziyyəti sınaq çəkisinin quraşdırıldığı yerdən rotorun fırlanma istiqamətində hesablanır.

    3. In the case of “Fixed position” – the 1st position (Z1), coincides with the place of installation of the trial weight. The counting direction of the position number is in the direction of rotation of the rotor.

4. By default the corrective weight will be added to the rotor. This is indicated by the label set in the “Add” field. If removing the weight (for example, by drilling), you must set a mark in the “Delete” field, after which the angular position of the correction weight will automatically change by 180º.

.

RunC (Trim run)

   Düzəliş çəkisini balanslaşdırıcı rotora quraşdırdıqdan sonra RunC (trim) aparmaq və yerinə yetirilən balanslaşdırmanın effektivliyini qiymətləndirmək lazımdır.

Attention!

Sınaq zamanı ölçməyə başlamazdan əvvəl maşının rotorunun fırlanmasını açmaq və onun işə girdiyinə əmin olmaq lazımdır. sürət.

                

RunTrim (Balansın keyfiyyətini yoxlayın) bölməsində vibrasiya parametrlərini ölçmək üçün (bax. Şəkil 7.37) “F7 – RunTrim” düyməsini (və ya kompüter klaviaturasında F7 düyməsini basın).

       

           Rotorun fırlanma tezliyinin (RPM), eləcə də 1x vibrasiyanın RMS komponentinin (Vо1) və fazasının (F1) qiymətinin ölçülməsinin nəticələri göstəriləcək.

The “Result” nişanı, əlavə düzəldici çəkilərin parametrlərinin hesablanmasının nəticələrini əks etdirən ölçmə nəticələrinin cədvəli (bax. Şəkil 7.37) ilə iş pəncərəsinin sağ tərəfində görünür.

           Bu çəkilər qalıq balanssızlığı kompensasiya etmək üçün rotorda artıq quraşdırılmış düzəldici çəkilərə əlavə edilə bilər.

Bundan əlavə, balanslaşdırmadan sonra əldə edilən qalıq rotor balanssızlığı bu pəncərənin aşağı hissəsində göstərilir.

Balanslaşdırılmış rotorun qalıq vibrasiyasının və / və ya qalıq balanssızlığının dəyərləri texniki sənədlərdə müəyyən edilmiş dözümlülük tələblərinə cavab verdikdə, balanslaşdırma prosesi başa çatdırıla bilər.

Otherwise, the balancing process may continue. This allows the method of successive approximations to correct possible errors that may occur during the installation (removal) of the corrective weight on a balanced rotor.

Balanslaşdırma rotorunda balanslaşdırma prosesini davam etdirərkən, parametrləri "Nəticə" pəncərəsində göstərilən əlavə düzəldici kütləni quraşdırmaq (çıxarmaq) lazımdır.

.

In the “Result"pəncərədə istifadə edilə bilən iki idarəetmə düyməsi var - "F4-Inf.Coeff“, “F5 - Düzəliş müstəvilərini dəyişdirin“.

.

.

Təsir əmsalları (2 təyyarə)

.

The “F4-Inf.Coeff” düyməsi (və ya kompüter klaviaturasındakı F4 funksiya düyməsi) iki kalibrləmə başlanğıcının nəticələrinə əsasən hesablanan rotor balanslaşdırma əmsallarına baxmaq və kompüter yaddaşında saxlamaq üçün istifadə olunur.

When it is pressed, the “Təsir əmsalları (iki müstəvi)” kompüter ekranında işçi pəncərəsi görünür (bax Şəkil 7.40), burada ilk üç kalibrləmə başlanğıcının nəticələrinə əsasən hesablanmış balanslaşdırma əmsalları göstərilir.

.

Şəkil 7.41. 2 müstəvidə balanslaşdırma əmsalları olan iş pəncərəsi.

.

Gələcəkdə bu tip maşınları balanslaşdırarkən "" istifadə etmək tələb olunur.Saved coeff.” rejimi və kompüter yaddaşında saxlanılan balanslaşdırma əmsalları.

Əmsalları saxlamaq üçün “F9 - Saxla” düyməsini basın və “Təsir əmsalları arxivi (2 təyyarə)” pəncərələri (bax Şəkil 7.42)

.

.

Şəkil 7.42. 2 müstəvidə balanslaşdırma əmsalları olan iş pəncərəsinin ikinci səhifəsi.

.

Düzəliş təyyarələrini dəyişdirin

The “F5 - Düzəliş müstəvilərini dəyişdirin” düyməsi düzəliş müstəvilərinin mövqeyini dəyişdirmək tələb olunduqda, kütlələri və quraşdırma bucaqlarını yenidən hesablamaq lazım olduqda istifadə olunur.

düzəldici çəkilər.

Bu rejim ilk növbədə mürəkkəb formalı rotorları (məsələn, krank valları) balanslaşdırarkən faydalıdır.

Bu düymə basıldıqda, iş pəncərəsi "Korreksiya çəkilərinin kütləsinin və digər düzəliş müstəvilərinə bucağın yenidən hesablanması” kompüter ekranında göstərilir (bax. Şəkil 7.42).

Bu iş pəncərəsində müvafiq şəkil üzərinə klikləməklə 4 mümkün variantdan birini seçməlisiniz.

Şəkil 7.29-da ilkin düzəliş müstəviləri (Н1 və Н2) yaşıl rənglə, onun haqqında danışdığı yeni (K1 və K2) isə qırmızı rənglə işarələnmişdir.

Sonra, “Hesablama məlumatları” bölməsində tələb olunan məlumatları daxil edin, o cümlədən:

– müvafiq düzəliş müstəviləri arasındakı məsafə (a, b, c);

– rotorda düzəldici çəkilərin quraşdırılmasının radiuslarının yeni dəyərləri (R1 ', R2').

Məlumatları daxil etdikdən sonra düyməni basmalısınız "F9 - hesablayın

Hesablama nəticələri (M1, M2 kütlələri və f1, f2 düzəldici çəkilərin quraşdırma bucaqları) bu iş pəncərəsinin müvafiq bölməsində göstərilir (bax. Şəkil 7.42).


Şəkil 7.43 Düzəliş təyyarələrini dəyişdirin. Rkorreksiya kütləsinin və digər korreksiya müstəvilərinə bucağın hesablanması.

.

.

.

.

Saxlanılan əmsal. 2 təyyarədə balanslaşdırma.

                                                                                                                          

Saved coeff. balancing balanslaşdırma əmsalları artıq təyin edilmiş və kompüterin yaddaşında saxlanmış maşında yerinə yetirilə bilər.

     Attention!

Yenidən balanslaşdırarkən, vibrasiya sensorları və faza bucağı sensoru ilkin balanslaşdırma zamanı olduğu kimi quraşdırılmalıdır.

Yenidən balanslaşdırma üçün ilkin məlumatların daxil edilməsi “İki müstəvi balans. Balans parametrləri”(bax. Şəkil 7.23).

.

In this case, in the “Influence coefficients” section, select the “Saved coeff.” Maddə. Bu halda, pəncərə "Təsir əmsalları arxivi (2 təyyarə)” görünəcək (bax. Şəkil 7.30), orada əvvəllər müəyyən edilmiş balanslaşdırma əmsallarının arxivi saxlanılır.

“►” və ya “◄” idarəetmə düymələrindən istifadə edərək bu arxivin cədvəlində hərəkət edərək, bizi maraqlandıran maşının balanslaşdırma əmsalları ilə istədiyiniz qeydi seçə bilərsiniz. Sonra bu məlumatı cari ölçmələrdə istifadə etmək üçün “F2 - OK” düyməsini basın və əvvəlki iş pəncərəsinə qayıdın.

Şəkil 7.44. 2 müstəvidə balanslaşdırma əmsalları olan iş pəncərəsinin ikinci səhifəsi.

After that, the contents of all other windows of the “2 pl-də balanslaşdırma. Mənbə məlumatı” avtomatik doldurulur.

.

Saxlanılan əmsal. Balanslaşdırma

.

Saved coeff.” balanslaşdırma yalnız bir tuning başlanğıcını və balanslaşdırma maşınının ən azı bir sınaq başlanğıcını tələb edir.

Tuning başlanğıcında vibrasiya ölçülməsi (Run # 0) maşının “2 təyyarədə balanslaşdırma” balanslaşdırma nəticələrinin cədvəli ilə işləyən pəncərə (bax. Şəkil 7.14). Run # 0 bölmə.

.

Attention!

       Ölçməyə başlamazdan əvvəl balans maşınının rotorunun fırlanmasını açmaq və onun sabit sürətlə işləmə rejiminə daxil olduğundan əmin olmaq lazımdır.

Vibrasiya parametrlərini ölçmək üçün Run # 0 bölməsində "F7 – Run#0” düyməsini (və ya kompüter klaviaturasında F7 düyməsini basın).

.

           Rotorun sürətinin (RPM), eləcə də RMS komponentlərinin (VО1, VО2) və 1x vibrasiya fazalarının (F1, F2) dəyərinin ölçülməsi nəticələrinin müvafiq sahələrində görünür. Run # 0 bölmə.

Eyni zamanda, “Result” nişanı açılır (bax. Şəkil 7.15), bu, balanssızlığını kompensasiya etmək üçün rotorda quraşdırılmalı olan düzəldici çəkilərin parametrlərinin hesablanmasının nəticələrini əks etdirir.

Bundan əlavə, qütb koordinat sistemindən istifadə edildikdə, displey kütlələrin dəyərlərini və düzəldici çəkilərin quraşdırma bucaqlarını göstərir.

Bıçaqlarda düzəldici çəkilərin parçalanması halında, balanslaşdırıcı rotorun bıçaqlarının nömrələri və onlara quraşdırılmalı olan çəki kütləsi göstərilir.

Bundan əlavə, balanslaşdırma prosesi 7.6.1.2-ci bölmədə göstərilən tövsiyələrə uyğun olaraq həyata keçirilir. ilkin balanslaşdırma üçün.

Attention!:

1.Ölçmə prosesi başa çatdıqdan sonra balanslaşdırılmış maşının ikinci işə salınmasından sonra onun rotorunun fırlanmasını dayandırın və əvvəlcədən təyin edilmiş sınaq çəkisini çıxarın. Yalnız bundan sonra rotorda düzəliş çəkisini quraşdırmağa (və ya çıxarmağa) başlaya bilərsiniz.
2.Rotordan düzəliş çəkisinin əlavə edilməsi (və ya çıxarılması) yerinin bucaq mövqeyinin hesablanması qütb koordinat sistemində sınaq çəkisinin quraşdırılması yerində aparılır. Hesablama istiqaməti rotorun fırlanma bucağının istiqaməti ilə üst-üstə düşür.
3.Bıçaqlarda balanslaşdırma zamanı - 1-ci üçün şərti olaraq qəbul edilmiş balanslaşdırılmış rotor qanadının sınaq çəkisinin quraşdırılması yeri ilə üst-üstə düşür. Kompüter ekranında göstərilən bıçağın istinad nömrəsinin istiqaməti rotorun fırlanması istiqamətində həyata keçirilir.
4.Proqramın bu versiyasında rotorda düzəliş çəkisinin əlavə olunacağı standart olaraq qəbul edilir. “Əlavə” sahəsində müəyyən edilmiş etiket buna sübutdur.

Çəki çıxarmaqla (məsələn, qazma yolu ilə) disbalansın düzəldilməsi halında, “Sökülmə” sahəsində etiket qurmaq lazımdır, onda korreksiya çəkisinin bucaq mövqeyi avtomatik olaraq 180º-də dəyişəcək.

Mandrel eccentricity elimination (Index balancing)If during balancing the rotor is installed in a cylindrical mandrel, then the eccentricity of the mandrel may introduce an additional error. To eliminate this error, the rotor should be deployed in the mandrel 180 degrees and carry out an additional start. This is called index balancing.

To carry out index balancing, a special option is provided in the Balanset-1A program. When checked Mandrel eccentricity elimination an additional RunEcc section appears in the balancing window.

.


Şəkil 7.45. İndeks balansı üçün iş pəncərəsi.

.

Run # 2 (Trial mass Plane 2) işə salındıqdan sonra pəncərə görünəcək


.


Şəkil 7.46. Diqqət pəncərələr
.

After installing the rotor with an 180 turn, Run Ecc must be completed. The program will automatically calculate the true rotor imbalance without affecting the mandrel eccentricity.

  7.4. Charts mode

.

  Working in the “Charts” mode begins from the Initial window (see. Fig. 7.1) by pressing “F8 – Charts”. Then opens a window “Measurement of vibration on two channels. Charts” (see. Fig. 7.19).

.

Fig. 7.47. Operating window “Measurement of vibration on two channels. Charts”.

.

  While working in this mode it is possible to plot four versions of vibration chart.

The first version allows to get a timeline function of the overall vibration (of vibration velocity) on the first and second measuring channels.

The second version allows you to get graphs of vibration (of vibration velocity), which occurs on rotation frequency and its higher harmonical components.

These graphs are obtained as a result of the synchronous filtering of the overall vibration time function.

The third version provides vibration charts with the results of the harmonical analysis.

The fourth version allows to get a vibration chart with the results of the spectrum analysis.  

  

Charts of overall vibration.

To plot a overall vibration chart in the operating window “Measurement of vibration on two channels. Charts” it is necessary to select the operating mode “overall vibration” by clicking the appropriate button. Then set the measurement of vibration in the box “Duration, in seconds,” by clicking on the button «▼» and select from the drop-down list the desired duration of the measurement process, which may be equal to 1, 5, 10, 15 or 20 seconds;

Upon readiness press (click) the “F9-Measure” button then the vibration measurement process begins simultaneously on two channels.

After completion of the measurement process in the operating window appear charts of time function of the overall vibration of the first (red) and the second (green) channels (see. Fig. 7.47).

On these charts time is plotted on X-axis and the amplitude of the vibration velocity (mm/sec) is plotted on Y-axis.

.

Fig. 7.48. Operating window for the output of the time function of the overall vibration charts

.

  There are also marks (blue-colored) in these graphs connecting charts of overall vibration with the rotation frequency of the rotor. In addition, each mark indicates beginning (end) of the next revolution of the rotor.

In need of the scale change of the chart on X-axis the slider, pointed by an arrow on fig. 7.20, can be used.

.

.

Charts of 1x vibration.

To plot a 1x vibration chart in the operating window “Measurement of vibration on two channels. Charts” (see Fig. 7.47) it is necessary to select the operating mode “1x vibration” by clicking the appropriate button.

Then appears operating window “1x vibration” (see Fig. 7.48).

Press (click) the “F9-Measure” button then the vibration measurement process begins simultaneously on two channels.

Fig. 7.49. Operating window for the output of the 1x vibration charts.
.

  After completion of the measurement process and mathematical calculation of results (synchronous filtering of the time function of the overall vibration) on display in the main window on a period equal to one revolution of the rotor appear charts of the 1x vibration on two channels.

In this case, a chart for the first channel is depicted in red and for the second channel in green. On these charts angle of the rotor revolution is plotted (from mark to mark) on X-axis and the amplitude of the vibration velocity (mm/sec) is plotted on Y-axis.

In addition, in the upper part of the working window (to the right of the button “F9 – Measure”) numerical values of vibration measurements of both channels, similar to those we get in the “Vibration meter” mode, are displayed.

In particular: RMS value of the overall vibration (V1s, V2s), the magnitude of RMS (V1o, V2o) and phase (Fi, Fj) of the 1x vibration and rotor speed (Nrev).

.

Vibration charts with the results of harmonical analysis.

.

To plot a chart with the results of harmonical analysis in the operating window “Measurement of vibration on two channels. Charts” (see Fig. 7.47) it is necessary to select the operating mode “Harmonical analysis” by clicking the appropriate button.

Then appears an operating window for simultaneous output of charts of temporary function and of spectrum of vibration harmonical aspects whose period is equal or multiple to the rotor rotation frequency (see Fig. 7.49).  

Attention!

When operating in this mode it is necessary to use the phase angle sensor which synchronizes the measurement process with the rotor frequency of the machines to which the sensor is set.

.

Fig. 7.50. Operating window harmonics of 1x vibration.

.

Upon readiness press (click) the “F9-Measure” button then the vibration measurement process begins simultaneously on two channels.

After completion of the measurement process in operating window (see Fig. 7.49) appear charts of time function (higher chart) and harmonics of 1x vibration (lower chart).

The number of harmonic components is plotted on X-axis and RMS of the vibration velocity (mm/sec) is plotted on Y-axis.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Charts of vibration time domen and spectrum.

To plot a spectrum chart use “F5-Spectrum” tab:

Then appears an operating window for simultaneous output of charts of wave and spectrum of vibration (Fig. 7.51).

Fig. 7.51. Operating window for the output of the spectrum of vibration .

Upon readiness press (click) the “F9-Measure” button then the vibration measurement process begins simultaneously on two channels.

After completion of the measurement process in operating window (see Fig. 7.50) appear charts of time function (higher chart) and spectrum of vibration (lower chart).

The vibration frequency is plotted on X-axis and RMS of the vibration velocity (mm/sec) is plotted on Y-axis.

In this case, a chart for the first channel is depicted in red and for the second channel in green.

ANNEX 1 ROTOR   BALANCING.

.

The rotor is a body that rotates around a certain axis and is held by its bearing surfaces in the supports. Bearing surfaces of the rotor transmit weights to the supports through rolling or sliding bearings. While using the term of “bearing surface” we simply refer to the Zapfen* or Zapfen-replacing surfaces.

.

*Zapfen (German for “journal”, “pin”) – is a part of an shaft or an axis, that is being carried by a holder (bearing box).

fig.1 Rotor and centrifugal forces.

.

In a perfectly balanced rotor, its mass is distributed symmetrically regarding the axis of the rotation. This means that any element of the rotor can correspond to another element located symmetrically in a relation to the axis of the rotation. During rotation, each rotor element acts upon by a centrifugal force directed in the radial direction (perpendicular to the axis of the rotor rotation). In a balanced rotor, the centrifugal force influencing any element of the rotor is balanced by the centrifugal force that influences the symmetrical element. For example, elements 1 and 2 (shown in fig.1 and colored in green) are influenced by centrifugal forces F1 and F2: equal in value and absolutely opposite in directions. This is true for all symmetrical elements of the rotor and thus the total centrifugal force influencing the rotor is equal to 0 the rotor is balanced. But if the symmetry of the rotor is broken (in Figure 1, the asymmetric element is marked in red), then the unbalanced centrifugal force F3 begins to act on the rotor.

When rotating, this force changes the direction together with the rotation of the rotor. The dynamic weight resulting from this force is transferred to the bearings, which leads to their accelerated wear. In addition, under the influence of this variable towards the force, there is a cyclic deformation of the supports and of the foundation on which the rotor is fixed, which lets out a vibration. To eliminate the imbalance of the rotor and the accompanying vibration, it is necessary to set balancing masses, that will restore the symmetry of the rotor.

Rotor balancing is an operation to eliminate imbalance by adding balancing masses.

The task of balancing is to find the value and places (angle) of the installation of one or more balancing masses.

.

The types of rotors and imbalance.

Considering the strength of the rotor material and the magnitude of the centrifugal forces influencing it, the rotors can be divided into two types: rigid and flexible.

Rigid rotors at operating conditions under the influence of centrifugal force may get slightly deformed and the influence of this deformation in the calculations may therefore be neglected.

Deformation of flexible rotors on the other hand should never be neglected. The deformation of flexible rotors complicates the solution for the balancing problem and requires the use of some other mathematical models in comparison with the task of balancing rigid rotors. It is important to mention that the same rotor at low speeds of rotation can behave like rigid one and at high speeds it will behave like flexible one. Further on we will consider the balancing of rigid rotors only.

Depending on the distribution of imbalanced masses along the length of the rotor, two types of imbalance can be distinguished – static and dynamic (quick, instant). It works correspondingly same with the static and the dynamic rotor balancing.

The static imbalance of the rotor occurs without the rotation of the rotor. In other words, it is quiescent when the rotor is under the influence of gravity and in addition it turns the “heavy point” down. An example of a rotor with the static imbalance is presented in Fig.2

.

Fig.2

.

The dynamic imbalance occurs only when the rotor spins.

An example of a rotor with the dynamic imbalance is presented in Fig.3.

.

Fig.3. Dynamic imbalance of rotor – couple of the centrifugal forces

.

In this case, imbalanced equal masses M1 and M2 are located in different surfaces – in different places along the length of the rotor. In the static position, i.e. when the rotor does not spin, the rotor may only be influenced by gravity and the masses therefore will balance each other. In dynamics when the rotor is spinning, the masses M1 and M2 start to be influenced by centrifugal forces FЎ1 and FЎ2. These forces are equal in value and are opposite in the direction. However, since they are located in different places along the length of the shaft and are not on the same line, the forces do not compensate each other. The forces of FЎ1 and FЎ2 create a moment impacted to the rotor. That is why this imbalance has another name “momentary”. Accordingly, non-compensated centrifugal forces influence the bearing supports, which can significantly exceed the forces that we relied on and also reduce the service life for the bearings.

Since this type of imbalance occurs only in dynamics during the rotor spinning, thus it is called dynamic. It can not be eliminated in the static balancing (or so called “on the knives”) or in any other similar ways. To eliminate the dynamic imbalance, it is necessary to set two compensating weights that will create a moment equal in value and opposite in direction to the moment arising from the masses of M1 and M2. Compensating masses do not necessarily have to be installed opposite to the masses M1 and M2 and be equal to them in value. The most important thing is that they create a moment that fully compensates right at the moment of imbalance.

In general, the masses M1 and M2 may not be equal to each other, so there will be a combination of static and dynamic imbalance. It is theoretically proved that for a rigid rotor to eliminate its imbalance it is necessary and sufficient to install two weights spaced along the length of the rotor. These weights will compensate both the moment resulting from the dynamic imbalance and the centrifugal force resulting from the asymmetry of the mass relative to the rotor axis (static imbalance). As usual the dynamic imbalance is typical for long rotors, such as shafts, and static – for narrow. However, if the narrow rotor is mounted skewed in reference to the axis, or worse, deformed (the so-called “wheel wobbles”), in this case it will be difficult to eliminate the dynamic imbalance (see Fig.4), due to the fact that it is difficult to set correcting weights, that create the right compensating moment.

.

Fig.4 Dynamic balancing of the wobbling wheel

.

.

Since the narrow rotor shoulder creates a short moment, it may require correcting weights of a large mass. But at the same time there is an additional so-called “induced imbalance” associated with the deformation of the narrow rotor under the influence of centrifugal forces from the correcting masses.

See the example:

” Methodical instructions on rigid rotors balancing” ISO 1940-1:2003 Mechanical vibration – Balance quality requirements for rotors in a constant (rigid) state – Part 1: Specification and verification of balance tolerances

.

This is visible for narrow fan wheels, which, in addition to the power imbalance, also influences an aerodynamic imbalance. And it is important to bear in mind that the aerodynamic imbalance, in fact the aerodynamic force, is directly proportional to the angular velocity of the rotor, and to compensate it, the centrifugal force of the correcting mass is used, which is proportional to the square of the angular velocity. Therefore, the balancing effect may only occur at a specific balancing frequency. At other speeds there would be an additional gap. The same can be said about electromagnetic forces in an electromagnetic motor, which are also proportional to the angular velocity. In other words it is impossible to eliminate all causes of vibration of the mechanism by any means of balancing.

.

.

.

.

.

.

.

.

Fundamentals of Vibration.

Vibration is a reaction of the mechanism design to the effect of cyclic excitation force. This force can may a different nature.

 The centrifugal force arising due to the imbalance of the rotor is an uncompensated force influencing the “heavy point”. Particularly this force and also the vibration caused by it are eliminated by the rotor balancing.
 Interacting forces, that have a “geometric” nature and arise out of errors in the manufacture and installation of mating parts. These forces can occur, for instance, due to the non-roundness of the shaft journal, errors in the tooth profiles in gears, the waviness of the bearing treadmills, misalignment of the mating shafts, etc. in case of non-roundness of the necks, the shaft axis will shift depending on the angle of rotation of the shaft. Although this vibration is manifested at the rotor speed, it is almost impossible to eliminate it with the balancing.
 Aerodynamic forces arising from the rotation of the impeller fans and other blade mechanisms. Hydrodynamic forces arising from the rotation of hydraulic pump impellers, turbines, etc.
 Electromagnetic forces arising from the operation of electric machines as a result, for example, due to the asymmetry of the rotor windings, the presence of short-circuited turns, etc.reasons.

.

The magnitude of vibration (for example, its amplitude AB) depends not only on the magnitude of the excitation force Fт acting on the mechanism with the circular frequency ω, but also on the stiffness k of the structure of the mechanism, its mass m, and damping coefficient C.

Various types of sensors can be used to measure vibration and balance mechanisms, including:

– absolute vibration sensors designed to measure vibration acceleration (accelerometers) and vibration velocity sensors;

– relative vibration sensors eddy-current or capacitive, designed to measure vibration.

In some cases (when the structure of the mechanism allows it) sensors of force can also be used to examine its vibration weight.

Particularly, they are widely used to measure the vibration weight of the supports of hardbearing balancing machines.

.

Therefore vibration is the reaction of the mechanism to the influence of external forces. The amount of vibration depends not only on the magnitude of the force acting on the mechanism, but also on the rigidity of the mechanism. Two forces with the same magnitude can lead to different vibrations. In mechanisms with a rigid support structure, even with the small vibration, the bearing units can be significantly influenced by dynamic weights. Therefore, when balancing mechanisms with stiff legs apply the force sensors, and vibration (vibro accelerometers). Vibration sensors are only used on mechanisms with relatively pliable supports, right when the action of unbalanced centrifugal forces leads to a noticeable deformation of the supports and vibration. Force sensors are used in rigid supports even when significant forces arising from imbalance do not lead to significant vibration.

The resonance of the structure.

We have previously mentioned that rotors are divided into rigid and flexible. The rigidity or flexibility of the rotor should not be confused with the stiffness or mobility of the supports (foundation) on which the rotor is located. The rotor is considered rigid when its deformation (bending) under the action of centrifugal forces can be neglected. The deformation of the flexible rotor is relatively large: it cannot be neglected.

In this article we only study the balancing of rigid rotors. The rigid (non-deformable) rotor in its turn can be located on rigid or movable (malleable) supports. It is clear that this stiffness/mobility of the supports is relative depending on the speed of rotation of the rotor and the magnitude of the resulting centrifugal forces. The conventional border is the frequency of free oscillations of the rotor supports/foundation. For mechanical systems, the shape and frequency of the free oscillations are determined by the mass and elasticity of the elements of the mechanical system. That is, the frequency of natural oscillations is an internal characteristic of the mechanical system and does not depend on external forces. Being deflected from the equilibrium state, supports tend to return to its equilibrium position due to the elasticity. But due to the inertia of the massive rotor, this process is in the nature of damped oscillations. These oscillations are their own oscillations of the rotor-support system. Their frequency depends on the ratio of the rotor mass and the elasticity of the supports.

.

.

.

When the rotor begins to rotate and the frequency of its rotation approaches the frequency of its own oscillations, the vibration amplitude increases sharply, which can even lead to the destruction of the structure.

There is a phenomenon of mechanical resonance. In the resonance region, a change in the speed of rotation by 100 rpm can lead to an increase in a vibration tenfold. In this case (in the resonance region) the vibration phase changes by 180°.

If the design of the mechanism is calculated unsuccessfully, and the operating speed of the rotor is close to the natural frequency of oscillations, the operation of the mechanism becomes impossible due to unacceptably high vibration. Usual balancing way is also impossible, as parameters change dramatically even with a slight change in the speed of rotation. Special methods in the field of resonance balancing are used but they are not well-described in this article. You can determine the frequency of natural oscillations of the mechanism on the run-out (when the rotor is turned off) or by impact with subsequent spectral analysis of the system response to the shock. The “Balanset-1” provides the ability to determine the natural frequencies of mechanical structures by these methods.

For mechanisms whose operating speed is higher than the resonance frequency, that is, operating in the resonant mode, supports are considered as mobile ones and vibration sensors are used to measure, mainly vibration accelerometers that measure the acceleration of structural elements. For mechanisms operating in hard bearing mode, supports are considered as rigid. In this case, force sensors are used.

Linear and nonlinear models of the mechanical system.

Mathematical models (linear) are used for calculations when balancing rigid rotors. The linearity of the model means that one model is directly proportionally (linearly) dependent on the other. For example, if the uncompensated mass on the rotor is doubled, then the vibration value will be doubled correspondingly. For rigid rotors you can use a linear model because such rotors are not deformed. It is no longer possible to use a linear model for flexible rotors. For a flexible rotor, with an increase of the mass of a heavy point during rotation, an additional deformation will occur, and in addition to the mass, the radius of the heavy point will also increase. Therefore, for a flexible rotor, the vibration will more than double, and the usual calculation methods will not work. Also, a violation of the linearity of the model can lead to a change in the elasticity of the supports at their large deformations, for example, when small deformations of the supports work some structural elements, and when large in the work include other structural elements. Therefore it is impossible to balance the mechanisms that are not fixed at the base, and, for example, are simply established on a floor. With significant vibrations, the unbalance force can detach the mechanism from the floor, thereby significantly changing the stiffness characteristics of the system. The engine legs must be securely fastened, bolted fasteners tightened, the thickness of the washers must provide sufficient rigidity, etc. With broken bearings, a significant displacement of the shaft and its impacts is possible, which will also lead to a violation of linearity and the impossibility of carrying out high-quality balancing.

.

Methods and devices for balancing

As mentioned above, balancing is the process of combining the main Central axis of inertia with the axis of rotation of the rotor.

The specified process can be executed in two ways.

The first method involves the processing of the rotor axles, which is performed in such a way that the axis passing through the centers of the section of the axles with the main Central axis of inertia of the rotor. This technique is rarely used in practice and will not be discussed in detail in this article.

The second (most common) method involves moving, installing or removing corrective masses on the rotor, which are placed in such a way that the axis of inertia of the rotor is as close as possible to the axis of its rotation.

Moving, adding or removing corrective masses during balancing can be done using a variety of technological operations, including: drilling, milling, surfacing, welding, screwing or unscrewing screws, burning with a laser beam or electron beam, electrolysis, electromagnetic welding, etc.

The balancing process can be performed in two ways:

– balanced rotors Assembly (in its own bearings);

– balancing of rotors on balancing machines.

To balance the rotors in their own bearings we usually use specialized balancing devices (kits), which allows us to measure the vibration of the balanced rotor at the speed of its rotation in a vector form, i.e. to measure both the amplitude and phase of vibration.

Currently, these devices are manufactured on the basis of microprocessor technology and (in addition to the measurement and analysis of vibration) provide automated calculation of the parameters of corrective weights that must be installed on the rotor to compensate its imbalance.

These devices include:

– measuring and computing unit, made on the basis of a computer or industrial controller;

– two (or more) vibration sensors;

– phase angle sensor;

– equipment for installation of sensors at the facility;

– specialized software designed to perform a full cycle of measurement of rotor unbalance parameters in one, two or more planes of correction.

For balancing rotors on balancing machines in addition to a specialized balancing device (measuring system of the machine) it is required to have an “unwinding mechanism” designed to install the rotor on the supports and ensure its rotation at a fixed speed.

Currently, the most common balancing machines exist in two types:

– over-resonant (with supple supports);

– hard bearing (with rigid supports).

Over-resonant machines have a relatively pliable supports, made, for example, on the basis of the flat springs.

The natural oscillation frequency of these supports is usually 2-3 times lower than the speed of the balanced rotor, which is mounted on them.

Vibration sensors (accelerometers, vibration velocity sensors, etc.) are usually used to measure the vibration of the supports of a resonant machine.

In the hardbearing balancing machines are used relatively-rigid supports, natural oscillation frequencies of which should be 2-3 times higher than the speed of the balanced rotor.

Force sensors are usually used to measure the vibration weight on the supports of the machine.

The advantage of the hard bearing balancing machines is that they can be balanced at relatively low rotor speeds (up to 400-500 rpm), which greatly simplifies the design of the machine and its foundation, as well as increases the productivity and safety of balancing.

.

Balancing technique

Balancing eliminates only the vibration which is caused by the asymmetry of the rotor mass distribution relative to its axis of rotation. Other types of the vibration cannot be eliminated by the balancing!

Balancing is the subject to technically serviceable mechanisms, the design of which ensures the absence of resonances at the operating speed, securely fixed on the foundation, installed in serviceable bearings.

The faulty mechanism is the subject to a repair, and only then – to a balancing. Otherwise, qualitative balancing impossible.

Balancing cannot be a substitute for repair!

.

The main task of balancing is to find the mass and the place (angle) of installation of compensating weights, which are balanced by centrifugal forces.

As mentioned above, for rigid rotors it is generally necessary and sufficient to install two compensating weights. This will eliminate both the static and dynamic rotor imbalance. A general scheme of the vibration measurement during balancing looks like the following:

.

.

fig.5 Dynamic balancing – correction planes and measure points

.

Vibration sensors are installed on the bearing supports at points 1 and 2. The speed mark is fixed right on the rotor, a reflective tape is glued usually. The speed mark is used by the laser tachometer to determine the speed of the rotor and the phase of the vibration signal.

.

.

fig. 6. Installation of sensors during balancing in two planes, using Balanset-1
1,2-vibration sensors, 3-phase, 4- USB measuring unit, 5-laptop

.

.

In most cases, dynamic balancing is carried out by the method of three starts. This method is based on the fact that test weights of an already-known mass are installed on the rotor in series in 1 and 2 planes; so the masses and the place of installation of balancing weights are calculated based on the results of changing the vibration parameters.

The place of installation of the weight is called the correction plane. Usually, the correction planes are selected in the area of the bearing supports on which the rotor is mounted.

The initial vibration is measured at the first start. Then, a trial weight of a known mass is installed on the rotor closer to one of the supports. Then the second start is performed, and we measure the vibration parameters, that should change because of the installation of the trial weight. Then the trial weight in the first plane ikincidə çıxarılır və quraşdırılır plane. Üçüncü işə salınma həyata keçirilir və vibrasiya parametrləri ölçülür. Sınaq çəkisi çıxarıldıqda, proqram avtomatik olaraq kütləni və balanslaşdırıcı çəkilərin quraşdırılması yerini (bucaqlarını) hesablayır.

Test çəkilərinin qurulmasında məqsəd sistemin balanssızlıq dəyişikliyinə necə reaksiya verdiyini müəyyən etməkdir. Kütlələri və nümunə çəkilərinin yerini bildiyimiz zaman, proqram məlum disbalansın tətbiqinin vibrasiya parametrlərinə necə təsir etdiyini göstərən sözdə təsir əmsallarını hesablaya bilər. Təsir əmsalları mexaniki sistemin özünün xüsusiyyətləridir və dayaqların sərtliyindən və rotor-dəstək sisteminin kütləsindən (ətalətindən) asılıdır.

Eyni dizaynın eyni tipli mexanizmləri üçün təsir əmsalları oxşar olacaqdır. Siz onları kompüterinizin yaddaşında saxlaya və sonradan sınaq sınaqları keçirmədən eyni tip mexanizmləri balanslaşdırmaq üçün istifadə edə bilərsiniz ki, bu da balanslaşdırmanın işini xeyli yaxşılaşdırır. Həmçinin qeyd etməliyik ki, sınaq çəkilərinin kütləsi elə seçilməlidir ki, sınaq çəkiləri quraşdırılarkən vibrasiya parametrləri nəzərəçarpacaq dərəcədə dəyişsin. Əks halda, təsir əmsallarının hesablanmasında xəta artır və balanslaşdırma keyfiyyəti pisləşir.

1111 Balanset-1 cihazı üçün bələdçi, balanslaşdırılmış rotorun kütləsindən və fırlanma sürətindən asılı olaraq sınaq çəkisinin kütləsini təxminən müəyyən edə biləcəyiniz bir düstur təqdim edir. Şəkil 1-dən başa düşdüyünüz kimi mərkəzdənqaçma qüvvəsi radial istiqamətdə, yəni rotor oxuna perpendikulyar təsir göstərir. Buna görə də vibrasiya sensorları elə quraşdırılmalıdır ki, onların həssaslıq oxu da radial istiqamətə yönəlsin. Adətən üfüqi istiqamətdə bünövrənin sərtliyi az olur, buna görə də üfüqi istiqamətdə vibrasiya daha yüksək olur. Buna görə də, həssaslığı artırmaq üçün sensorlar quraşdırılmalıdır ki, onların həssaslıq oxu da üfüqi istiqamətə yönəldilsin. Baxmayaraq ki, heç bir fundamental fərq yoxdur. Radial istiqamətdə vibrasiyaya əlavə olaraq, rotorun fırlanma oxu boyunca eksenel istiqamətdə vibrasiyaya nəzarət etmək lazımdır. Bu vibrasiya adətən balanssızlıqdan deyil, əsasən başqa səbəblərdən yaranır due mufta vasitəsilə birləşdirilən valların yanlış hizalanmasına və uyğunsuzluğuna. Bu vibrasiya balanslaşdırma ilə aradan qaldırılmır, bu halda hizalama tələb olunur. Təcrübədə, adətən, belə mexanizmlərdə rotorun balanssızlığı və valların uyğunsuzluğu var ki, bu da vibrasiyanın aradan qaldırılması vəzifəsini xeyli çətinləşdirir. Belə hallarda, əvvəlcə mexanizmi uyğunlaşdırmaq və sonra tarazlaşdırmaq lazımdır. (Güclü fırlanma anı balanssızlığı ilə, vibrasiya da eksenel istiqamətdə baş verir due bünövrə strukturunun “burulmasına”).

.

Criteria for assessing the quality of balancing mechanisms.

.

Rotorun (mexanizmlərin) balanslaşdırılmasının keyfiyyəti iki yolla qiymətləndirilə bilər. Birinci üsul balanslaşdırma zamanı müəyyən edilmiş qalıq disbalansın dəyərinin qalıq balanssızlığa dözümlülüklə müqayisəsini nəzərdə tutur. Standartda quraşdırılmış müxtəlif sinif rotorlar üçün göstərilən toleranslar ISO 1940-1-2007. «Vibration. Requirements for the balancing quality of rigid rotors. Part 1. Determination of permissible imbalance”. 
Bununla belə, bu dözümlülüklərin həyata keçirilməsi minimum vibrasiya səviyyəsinə nail olmaq ilə əlaqəli mexanizmin əməliyyat etibarlılığına tam zəmanət verə bilməz. bu due mexanizmin vibrasiyasının təkcə onun rotorunun qalıq balanssızlığı ilə əlaqəli qüvvənin miqdarı ilə deyil, həm də bir sıra digər parametrlərdən də asılı olduğuna görə: mexanizmin struktur elementlərinin sərtliyi K, onun kütləsi M, sönüm əmsalı və sürəti. Buna görə də, mexanizmin dinamik keyfiyyətlərini (o cümlədən onun balansının keyfiyyətini) qiymətləndirmək üçün bəzi hallarda bir sıra standartlarla tənzimlənən mexanizmin qalıq vibrasiya səviyyəsini qiymətləndirmək tövsiyə olunur. 
Mexanizmlərin icazə verilən vibrasiya səviyyələrini tənzimləyən ən ümumi standartdır ISO 10816-3: 2009 Ön baxış Mexanik vibrasiya - Dönməyən hissələrdə ölçmələr ilə maşının vibrasiyasının qiymətləndirilməsi - 3-cü hissə: Nominal gücü 15 kVt-dan yuxarı və nominal sürəti 120 rpm ilə 15 000 r/dəq arasında olan sənaye maşınları situ.» 
Onun köməyi ilə, elektrik sürücüsünün gücünü nəzərə alaraq, bütün növ maşınlarda tolerantlıq təyin edə bilərsiniz. 
Bu universal standarta əlavə olaraq, xüsusi mexanizm növləri üçün hazırlanmış bir sıra ixtisaslaşmış standartlar mövcuddur. Misal üçün, 
ISO 14694:2003 “Industrial fans – Specifications for balance quality and vibration levels”, 
ISO 7919-1-2002 “Vibration of machines without reciprocating motion. Measurements on rotating shafts and evaluation criteria. General guidance.»

azAZ